2-Limited Broadcast Domination in Grid Graphs Aaron Slobodin (with G. MacGillivray, W. Myrvold, & F. Ruskey)

Introduction

Let G = (V, E) be a graph. Suppose there is a transmitter located at each vertex $v \in V$ capable of **broadcasting** at strength $0, 1, \ldots, k$, where strength 0 corresponds with not broadcasting. A vertex v broadcasting at strength s is **heard** by all vertices within distance s of v. Our goal is to assign strengths to the transmitters such that every vertex not transmitting hears the broadcast by one that is. The result is a dominating k-limted broadcast on G. The **cost** of such a broadcast is the sum of the strengths of the transmitters. $\gamma_{b,k}(G)$ denotes the least cost of a k-limited broadcast on G. Observe that $\gamma_{b,1} = \gamma$.

Limited broadcast domination is a restriction of broadcast domination (where vertices can broadcast at any strength) introduced in [Erw01]. Broadcast domination is known on grid graphs [BS09], however klimited broadcast on grid graphs is unknown. We provide tight bounds on the 2-limited broadcast domination number of grid graphs.

2-Limited Broadcasts Domination

Let G = (V, E) be a graph. For each vertex $i \in V$, let 1 if vertex i is broadcasting at strength k, $x_{i,k} = \{$ otherwise

Formulation of $\gamma_{b,2}(G)$ as an Integer Linear Program (ILP): Minimize: $\sum \sum k \cdot x_{i,k}$ $k=1 i \in V$

Subject to: $\sum x_{i,k} \ge 1$, for each vertex $j \in V$ $d(i,j) \leq k$

Example 1: Red diamonds represent vertices at their center broadcasting at strength 1 or 2.

Upper Bounds

For $P_m \Box P_n$, where $2 \leq m \leq 12$, we create upper bounds using the following methodology.

Methodology:

1. Fix *m* and use an ILP solver [CO17] to determine $\gamma_{b,2}(P_m \Box P_n)$ for small values of $n \ (\leq 50)$,

2. Manually inspect for **patterns** in the broadcast structure,

3. Create general constructions based on these patterns.

University of Victoria

Example 2: Referring to Example 1, we observe a pattern in the optimal 2-limited broadcast on $P_5 \square P_{28}$. Using this pattern, we repeatedly tile $P_5 \square P_n$ with a main tile B and complete the ends of the broadcast with B_1, B_2 , or B_3 based on $n \pmod{4}$.

For $P_{m>13} \square P_{n>13}$, we obtain upper bounds by modifying the 2-limited broadcasts on the plane. Placing $P_m \Box P_n$ in the plane (blue rectangle) below), we create a valid broadcast by moving broadcasting vertices, within distance 2 of $P_m \Box P_n$, in and reducing their broadcast strength.

Through a counting argument on the number of broadcasting vertices in the plane, we establish our generalized upper bound.

Fractional 2-limited Multipacking

The **dual** of the linear programming relaxation of 2-limited broadcast domination is 2-limited multipacking $mp_2(G)$, stated as follows. Let G = (V, E) be a graph. For each vertex $i \in V$, let weight packed at vertex $i = y_i \in [0, 1]$.

Formulation of $mp_2(G)$ as a Linear Program (LP):

Maximize: $\sum y_i$ $i \in V$ Subject to (1): $\sum y_i \leq 1$, for each vertex $j \in V$, $d(i,j) \leq 1$ (2): $\sum y_i \leq 2$, for each vertex $j \in V$. $d(i,j) \leq 2$

Resulting upper bound: $\gamma_{b,2}\left(P_5 \Box P_n\right) \le n+1.$

Example 3: Red circles depict vertices at their center packed with weight 0.5.

Figure 2: Optimal Fractional 2-Limited Multipacking on $P_4 \square C_{10}$, $mp_2(P_4 \square C_{10}) = 8$. Lower Bounds

For $P_{2 < m < 12} \Box P_n$, we create lower bounds by the following methodology. Methodology:

Lower Bounds	$\gamma_{b,2}\left(P_m\Box P_n ight)$	Upper Bounds
	$\gamma_{b,2}(P_2\Box P_n)$	$= \left\lceil \frac{n+1}{2} \right\rceil$
	$\gamma_{b,2}(P_3 \Box P_n)$	$= \left\lceil \frac{2n}{3} \right\rceil$
$\left\lceil 8\lfloor \frac{n}{10} \rfloor \right\rceil \le$	$\gamma_{b,2}(P_4 \Box P_n)$	$\left \le 8 \left\lfloor \frac{n}{10} \right\rfloor + c_4(n)_{\le 8} \right $
$\left[7.703\lfloor\frac{n}{8} ight] \le$	$\gamma_{b,2}(P_5\Box P_n)$	$\leq n+1$
$\left[17.846\left\lfloor\frac{n}{16}\right\rfloor\right] \leq$	$\gamma_{b,2}(P_6\Box P_n)$	$\leq 18\lfloor \frac{n}{16} \rfloor + c_6(n)_{\leq 18}$
$\left\lceil 16.466 \lfloor \frac{n}{14} \rfloor \right\rceil \le$	$\gamma_{b,2}(P_7\Box P_n)$	$\left \le 18 \lfloor \frac{n}{14} \rfloor + c_7(n) \le 18 \right $
$\left[31.302\left\lfloor\frac{n}{22}\right\rfloor\right] \leq$	$\gamma_{b,2}(P_8 \Box P_n)$	$\leq 32\lfloor \frac{n}{22} \rfloor + c_8(n)_{\leq 32}$
$\left\lceil 15.757 \lfloor \frac{n}{10} \rfloor \right\rceil \le$	$\gamma_{b,2}(P_9 \Box P_n)$	$\left \le 16 \lfloor \frac{n}{10} \rfloor + c_9(n)_{\le 16} \right $
$\left[31.130\left\lfloor\frac{n}{18}\right\rfloor\right] \le$	$\gamma_{b,2}(P_{10}\Box P_n)$	$\leq 32\lfloor \frac{n}{18} \rfloor + c_{10}(n)_{\leq 32}$
$\left\lceil 48.976 \lfloor \frac{n}{26} \rfloor \right\rceil \le$	$\gamma_{b,2}(P_{11} \Box P_n)$	$\leq 50\lfloor \frac{n}{26} \rfloor + c_{11}(n)_{\leq 50}$
$\left[48.895\left\lfloor\frac{n}{24} ight] ight] \le$	$\gamma_{b,2}(P_{12} \Box P_n)$	$\left \le 50 \lfloor \frac{n}{24} \rfloor + c_{12}(n) \le 50 \right $
$\left\lceil 2\left(\frac{mn}{13}\right) + 2.48\left(\frac{m+n}{13}\right) \right\rceil \le \left $	$\gamma_{b,2}\left(P_{m\geq 13}\Box P_n\right)$	$\leq 2\left(\frac{mn}{13}\right) + 4\left(\frac{m+n}{13}\right) + c_{13}(n) \leq 2$

[BS09]	Bostjan Bresar and Simon S
	Combinatoria 92 (2009).

[CO17] COIN-OR, CBC: A COIN-OR integer programming solver, https://projects.coin-or.org/Cbc, 2017.

(2001)

Acknowledgements: I would like to thank my advisors for their invaluable guidance, this research has been a lot of fun.

University of Victoria

1. Fix *m*, given the **main** tile $P_m \Box P_x$ used in our 2-limited broadcast construction on $P_m \Box P_n$, use an LP solver to determine $mp_2(P_m \Box C_x)$, **2.** We can repeatedly **tile** $P_m \Box P_n$ with this optimal 2-limited multipacking on $P_m \Box C_x$ and create a lower bound on $\gamma_{b,2}(P_m \Box P_n)$.

For $P_{m>13} \square P_{n>13}$, we use a similar argument as our upper bound and consider the optimal 2-limited multipacking on the plane.

Results

where $c_i(n)_{\leq x}$ is a number between 0 and x dependent upon n for all i.

Take Home: We established tight bounds and known optimal values for $\gamma_{b,2}(P_n \Box P_m)$. Using similar methods, we have also created tight bounds and known optimal values for $\gamma_{b,2}(P_n \Box C_m)$ and $\gamma_{b,2}(C_n \Box C_m)$.

References

Spacapan, Broadcast domination of products of graphs, Ars

[Erw01] David John Erwin, Cost domination in graphs, Ph.D. Thesis, Western Michigan University